Consider a neutrino $\nu$ described by a repetitive chain of events

$\Psi ( \nu ) = \left( \sf{\Omega}_{1}, \sf{\Omega}_{2}, \sf{\Omega}_{3} \ \ldots \ \right)$

where quarks are parsed into eight components

$\sf{\Omega} = \left\{ \sf{P}_{\! 1}, \sf{P}_{\! 2}, \sf{P}_{\! 3}, \sf{P}_{\! 4}, \sf{P}_{\! 5}, \sf{P}_{\! 6}, \sf{P}_{\! 7}, \sf{P}_{\! 8} \right\}$

as shown in the accompanying tables. The event $\sf{\Omega}$ cannot always satisfy the conditions for being a full space-time event because there are not always enough quarks to determine the magnetic polarity $\delta _{\hat{m}}$ or electric polarity $\delta _{\hat{e}}$. So we just assert that quarks are distributed as shown These conventions are called three dimensional models of neutrinos.

## Muonic Anti-Neutrino

$\sf{\Omega} ( \bar{\nu}_{\sf{\mu}} ) = \mathrm{4}\bar{\sf{a}} + \mathrm{4}\sf{m}+ \mathrm{4}\bar{\sf{u}}$

Muonic Anti-Neutrino |

$\sf{P}_{\! \it{k}}$ | $\delta _{\hat{m}}$ | $\delta _{\hat{e}}$ | $\delta _{\theta}$ | quarks |

1 | +1 | 0 | +1 | $\sf{2m}$ |

2 | 0 | +1 | +1 | $\sf{\bar{u}}$ |

3 | -1 | 0 | +1 | $\sf{2\bar{a}}$ |

4 | 0 | -1 | +1 | $\sf{\bar{u}}$ |

5 | +1 | 0 | -1 | $\sf{2m}$ |

6 | 0 | +1 | -1 | $\sf{\bar{u}}$ |

7 | -1 | 0 | -1 | $\sf{2\bar{a}}$ |

8 | 0 | -1 | -1 | $\sf{\bar{u}}$ |

A three-dimensional quark model of a muonic anti-neutrino. |

## Electronic Neutrino

$\sf{\Omega} ( \nu_{\sf{e}} ) = \mathrm{4}\bar{\sf{g}} + \mathrm{4}\sf{e}+ \mathrm{4}\sf{u}$

Electronic Neutrino |

$\sf{P}_{\! \it{k}}$ | $\delta _{\hat{m}}$ | $\delta _{\hat{e}}$ | $\delta _{\theta}$ | quarks |

1 | +1 | 0 | +1 | $\sf{u}$ |

2 | 0 | +1 | +1 | $\sf{2e}$ |

3 | -1 | 0 | +1 | $\sf{u}$ |

4 | 0 | -1 | +1 | $\sf{2\bar{g}}$ |

5 | +1 | 0 | -1 | $\sf{u}$ |

6 | 0 | +1 | -1 | $\sf{2e}$ |

7 | -1 | 0 | -1 | $\sf{u}$ |

8 | 0 | -1 | -1 | $\sf{2\bar{g}}$ |

A three-dimensional quark model of an electronic neutrino. |

Related WikiMechanics articles.